If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+101n=5400
We move all terms to the left:
n^2+101n-(5400)=0
a = 1; b = 101; c = -5400;
Δ = b2-4ac
Δ = 1012-4·1·(-5400)
Δ = 31801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31801}=\sqrt{49*649}=\sqrt{49}*\sqrt{649}=7\sqrt{649}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(101)-7\sqrt{649}}{2*1}=\frac{-101-7\sqrt{649}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(101)+7\sqrt{649}}{2*1}=\frac{-101+7\sqrt{649}}{2} $
| –10−5y=10−3y | | x+1-(2x+4)=4+5(-x+1) | | 7r+9=-8-10r | | -3x+12=4x+-10 | | 7f=-4+5f | | t-10=-1 | | 1-8f+16f²=0 | | F(x)=95x | | 4+g/2=-12 | | 24=y+1924 | | -3(2c-5))=15 | | 5/6x-1/6x+3=21 | | 9x-4=5-4x | | -7x-27=8-(x=19) | | *+5y=29 | | –17.02=y–4+ –19.32 | | .05x+.25(24-x)=4.40 | | -(3-6b)=6b+6b+5 | | 5(x+43)=2(x+4) | | 125=0,6x+50 | | 6x+2x-3=4x+9 | | 7+t=-2 | | 10x-1+8x+3=180 | | 10x-1+8x+3=189 | | 166=-29k | | 3(5x-8)=20x+1 | | x/8+24=28 | | 6^(x-4)=37 | | 4x+5x+3x-x=13-2+22 | | 6x-4=37 | | 14=10−–n | | ?=1.6x4 |